ALGEBRAIC QUANTUM HYPERGROUPS II: CONSTRUCTIONS AND EXAMPLES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Quantum Hypergroups

An algebraic quantum group is a regular multiplier Hopf algebra with integrals. In this paper we will develop a theory of algebraic quantum hypergroups. It is very similar to the theory of algebraic quantum groups, except that the comultiplication is no longer assumed to be a homomorphism. We still require the existence of a left and of a right integral. There is also an antipode but it is char...

متن کامل

Algebraic Quantum Hypergroups

An algebraic quantum group is a multiplier Hopf algebra with integrals. In this paper we will develop a theory of algebraic quantum hypergroups. It is very similar to the theory of algebraic quantum groups, except that the comultiplication is no longer assumed to be a homomorphism. We still require the existence of a left and of a right integral. There is also an antipode but it is characterize...

متن کامل

Basic Constructions and Examples

4. Examples. 7 4.1. Rigid rotation of a compact group. 7 4.2. Adding machines. 7 4.3. Interval Exchange Maps. 8 4.4. Full shifts and shifts of finite type. 9 4.5. More examples of subshifts. 10 4.5.1. Prouhet-Thue-Morse 11 4.5.2. Chacon system 11 4.5.3. Sturmian systems 11 4.5.4. Toeplitz systems 11 4.5.5. Sofic systems 11 4.5.6. Context-free systems 12 4.5.7. Coded systems 12 4.6. Smooth expan...

متن کامل

Abelian Hypergroups and Quantum Computation

Motivated by a connection, described here for the first time, between the hidden normal subgroup problem (HNSP) and abelian hypergroups (algebraic objects that model collisions of physical particles), we develop a stabilizer formalism using abelian hypergroups and an associated classical simulation theorem (a la Gottesman-Knill). Using these tools, we develop the first provably efficient quantu...

متن کامل

On the Algebraic Structure of Transposition Hypergroups with Idempotent Identity

This paper studies the algebraic structure of transposition hypergroups with idempotent identity. Their subhypergroups and their properties are examined. Right, left and double cosets are defined through symmetric subhypergroups and their properties are studied. Further- more, this paper examines the homomorphisms, the behaviour of attrac- tive and non-attractive elements through them, as well ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics

سال: 2011

ISSN: 0129-167X,1793-6519

DOI: 10.1142/s0129167x11006830